Buying a Reverse Osmosis (RO) system for an industrial setting – a simple guide (2023)

A Reverse Osmosis (RO) system is a highly effective and popular technology used by many manufacturing industries to purify water. There are many different systems on the market so it can be overwhelming when trying to find one that meets your company’s exact requirements. If you are currently looking for an industrial RO system and want to know what reverse osmosis is, what to look for in a RO system and what questions you should be asking, then this guide is for you.

If, after reading our guide, you still have some unanswered questions our team at AllWater Technologies Ltd are happy to help. They can be contacted on or +44 (0) 1934 751333.

View our Reverse Osmosis Systems.


  • What is Reverse Osmosis?
  • How does a Reverse Osmosis System work?
  • How do I know if my company needs an RO system?
  • What chemicals and substances can an RO system remove?
  • Is RO water acidic?
  • Does water temperature affect RO performance?
  • Is an RO system cost-effective when compared to an alternative technology such as ion exchange demineralisation?
  • Are RO systems environmentally friendly?
  • Is pre-treatment of water necessary?
    • Removing Chlorine from water
    • Removing Organics from water
    • Removing metals from water
    • Removing sediment from water
    • Scaling and RO membranes
  • How do I know what RO System to choose?
    • What size of RO system do I need?
    • What quality of water do I need?
  • How do I compare different RO systems?
    • What flux rate do I need? And how many membranes are included within your price?
    • Will your RO system support the integration of additional pumps if needed and if so, how many?
    • What do you charge for Clean in Place (CIP) connectivity?
    • Can water quality be tested from individual membranes?
    • What instrumentation do you offer?
  • Do I need a duplex RO system?
  • Do RO systems need regular servicing?
  • What spares should I keep?
  • What are Cleaning in place (CIP) systems?
  • What is a Membrane Autopsy?
  • How do I know if my RO membranes are fouled?
  • Are there any disadvantages to an RO system?
  • Are there more efficient RO systems available?
  • Why are RO systems often used for Pharmaceutical applications?

What is Reverse Osmosis?

To understand what Reverse Osmosis is you first need to understand osmosis. In simple terms, osmosis is the movement of a solvent, for example, water through a semi-permeable membrane from a region of lower concentration to a region of higher concentration to achieve balance on both sides of the membrane. This movement occurs naturally without any energy being applied. To stop this natural process from occurring you need to apply pressure to the higher concentration side of the membrane. The osmotic pressure is the pressure difference needed to stop this natural flow of the solvent across the semi-permeable membrane.

For reverse osmosis to occur, you apply a pressure that is higher than the osmotic pressure. This forces the solvent through the semi-permeable membrane in the opposite direction to that which occurs naturally with osmosis, leaving any impurities behind. The water passing through the membrane is referred to as the “permeate” (or product) whilst the remainder is referred to as “concentrate” (or reject). As the RO membrane only allows a minute amount of salts in the feed water to pass through, the conductivity of the permeate is very low, whereas the concentrate is very high in dissolved salts.

To achieve reverse osmosis in an industrial setting you need to buy a suitable reverse osmosis system. An RO system is an efficient water filtration system and is usually a self-contained unit. Using an RO system you can effectively remove many different pollutants and chemicals from water (approximately 95%-99% of contaminents)

How does a Reverse Osmosis System work?

How do I know if my company needs an RO system?

Reverse osmosis technology produces purified water, so it may be suitable for any industry that needs high quality water for any reason.

There are many reasons why some industries choose an RO system over other technologies. For example, water purified using a RO system may be used as an ingredient for drugs by pharmaceutical firms. For the food and beverage industries the purified water might be used in production of packaging materials or as an ingredient itself and for aerospace and automotive companies the water may be used for production and finishing. For other manufacturing firms, the water may be used for cooling or cleaning products and equipment.

Basically, if you need water to be of a higher quality than your town’s water supply, then an RO system might work for you. As there are many different RO systems to choose from, it is worth narrowing your search to companies that have expertise in other industrial water treatment technologies in addition to RO systems as they may recommend a different solution that better suits your requirements.

(Video) reverse osmosis plant | water filtration plant | RO plant | how RO plant works

View our RO Systems

What chemicals and substances can an RO system remove?

RO systems are most often renowned for their ability to remove micro-organisms, but they can also remove a host of other chemicals and substances. The membrane used in an RO system is a molecular filter and as a result it will remove most contaminants including:

  • Nitrates. Whilst good for plants nitrates can be harmful to people in high concentrations.
  • Bacteria.
  • Viruses.
  • Endotoxins. An endotoxin is a byproduct of bacterial breakdown and like, nitrates, these can be harmful to people.
  • Silica. Removal of silica is particularly useful for boiler feed water applications.
  • Dissolved salts and minerals. Although dissolved salts and minerals are often beneficial in drinking water, for manufacturing purposes these might lead to deposits on work surfaces that are detrimental to decorative finish or operational performance.

Whilst an RO system will remove almost everything it will remove some chemicals to a better degree than others. For example, small molecules such as Sodium Chloride are more likely to pass through the membrane than larger molecules such as Sulphates.

We are often asked if an RO system will remove Bicarbonate. Bicarbonate is unusual because it can pass through an RO membrane depending upon pH. For example, at lower pH the Bicarbonate exists in the form of carbon dioxide and will easily pass through an RO membrane. To prevent this from occurring and to ensure that as much Bicarbonate is rejected as possible, then the ideal pH is 8.3. At this pH the Bicarbonate exists as HC03. If your water has a high Bicarbonate level but a low pH, you have two options. You can either raise the pH by dosing with a small amount of an alkaline reagent or use an alternative technology such as a degassing membrane to remove the Carbon Dioxide.

Is RO water acidic?

RO water is generally acidic because any CO2 passing through the membrane forms Carbonic acid which lowers the pH. However, due to the lack of buffering this pH may seem disproportionate to the actual level of acidity so even the smallest amount of an alkaline reagent such as Sodium Hydroxide will quickly lead to an increase in pH.

Does water temperature affect RO performance?

An RO membrane responds to temperature in a similar way as human skin. Pores open more in response to high temperatures and close in lower temperatures. For an RO membrane, high water temperatures cause an increase in both flux rate and in salt passage through the membrane resulting in an increase in permeate conductivity. With cold water temperatures the flux rate decreases but this can result in an improved permeate conductivity. The performance on most RO systems is usually expressed at standard feed concentration and temperature with temperature typically being 15 degrees C. Under extreme low temperature water conditions, it would not be unusual to heat the water to some degree first before contact with the RO system.

The specific temperature-related permeate output can be calculated according to the following calculation equation:

Permeate output at X º C = Rate output x Correction Factor F

T in º C

Design Temperature

Nominal output = 100%Correction Factor



Is an RO system cost-effective when compared to an alternative technology such as ion exchange demineralisation?

Where the incoming water supply is of low conductivity, ion exchange demineralisation is a more cost-effective technology but if the conductivity of the incoming water is high then an RO system tends to become more cost-effective. If you are unsure our team at AWT can carry out a cost comparison to determine which technology is the most cost-effective for your specific requirements.

Are RO systems environmentally friendly?

RO systems are generally considered as offering an environmentally friendly way of purifying water. The process typically removes up to 99% of total dissolved solids (TDS) and does not use any hazardous chemical reagents commonly used in other processes. However, typically they require more electricity to run than other water purification methods and they can waste a lot of water. Despite this, for many industries the lack of hazardous chemicals offsets these two negatives. As other systems used for the production of pure water may use corrosive chemicals, such as Hydrochloric Acid and Sodium Hydroxide, for many companies the benefit of not having to manage the safe use of these hazardous chemicals is an advantage.

Is pre-treatment of water necessary?

If you are using a town’s water supply then it is highly likely that you will need to undertake some pre-treatment of the water before passing it through your RO system. Semi-permeable, RO membranes are sensitive and certain chemicals and substances can cause damage to the RO membranes reducing their shelf-life and efficacy. In order to reduce problems associated with most potential foulants, it may be possible to reduce the level of recovery on the RO system to 25% or less. However, this is not a solution for damage caused to membranes by free Chlorine present in town water supplies.

Removing Chlorine from water

As a bare minimum, you will have to remove free chlorine present in the incoming water before passing through your RO system. Chlorine is a powerful oxidant and is added to town’s water supplies to ensure that water is free of bacteria. As a powerful oxidant Chlorine attacks RO membranes, breaking them down and increasing the pore size. As a result, higher levels of salt will be able to move through the membrane resulting in higher permeate conductivity.

(Video) How To Select The Best Reverse Osmosis System

To remove free Chlorine from water for use with smaller RO systems you generally use an activated carbon filter – even ‘under the sink’ RO systems use this method. For a larger RO system, you might treat the water with a reducing agent such as Sodium Bi-Sulphite (SBS). This method can offer some capital cost savings as well as reducing both footprint and the amount of water required for the backwashing of carbon filters.

Removing Organics from water

Organics are usually large molecules and they block the pores of RO membranes. This is also known as ‘plug fouling’. They can be removed from water using either activated carbon filtration or an organic scavenger. You can use activated carbon filtration to remove both free chlorine and the organics at the same time.

The term ‘organic scavenger’ generally refers to an ion exchange system, which uses anion resins to ‘trap’ the organics. These ‘trapped’ organics are then removed from the resin by regeneration with brine or a combination of caustic and brine, which you can also heat in certain circumstances to make the process more efficient.

Removing metals from water

Most town water supplies are free of heavy metals. However, if your RO system is operating on water sourced from a borehole then it is possible that metals such as Iron and Manganese may be present in the water. These metals can precipitate in concentration at the membrane surface causing it to ‘foul’ . To remove Iron and Manganese you need to use a specific filter that incorporates a media, which typically includes Manganese Dioxide. This acts as a catalyst to oxidise the Iron and the Manganese causing them to precipitate so that they can be filtered and removed prior to contact with the RO membrane.

Removing sediment from water

Turbidity is measured in Nephelometric Turbidity Units (NTU). The design criteria for most RO membranes are that they must have a Fouling Index (FI) less than 3NTU. If the NTU is higher than this, it will be necessary to undertake additional filtration, otherwise sediment, if present, has the potential to block both the RO membrane feed spacer and the membrane itself. The ideal pre-filtration in this situation is ultra-filtration although this is dependent upon the level and the nature of the solids present. Other technologies that can be used as an alternative include flocculation, settlement and sand filtration.

Scaling and RO membranes

Scaling most commonly refers to the formation of Calcium and Magnesium Sulphate, Carbonate and Bicarbonate salts which precipitate on concentration at the RO membrane. To prevent scaling you typically have two choices. You can either use ion exchange softening or you can dose with an anti-scalent. Ion exchange softening uses a cation resin which exchanges the Calcium and Magnesium ions for Sodium, producing salts which have a higher solubility and will not precipitate on concentration at the RO membrane. Once the softener resin becomes exhausted it can be regenerated using brine.

You would generally choose to dose with an anti-scalent for larger RO systems as there are benefits to be had with regard to capital cost, footprint and on the volumes of water and brine needed for regeneration of an ion exchange softener. However, ion exchange softening is considered by many to be a much simpler technology and it is less likely to lead to catastrophic scaling of RO membranes if it starts to fail. Typically as softener resins age, capacity may be reduced leading to hardness passing towards the end of the service cycle which results in a gradual ‘fouling’ of the RO membranes. By contrast, failure of an anti-scalent dosing system results in acute failure of the RO membranes as the scale builds up quickly. All AWT anti-scalent dosing systems incorporate a flow monitoring system, which stops the RO system from running once a low flow is detected before complete failure can occur.

How do I know what RO System to choose?

There are two main factors you will need to consider when looking to buy an RO system.

What size of RO system do I need?

First and foremost, you need to determine the flow rate you need. When sizing an RO system the flow rate referred to is normally the permeate flow rate and not the feed flow to the RO unit.

What quality of water do I need?

Another consideration when buying an RO system is the quality of water you are looking to achieve. An RO membrane, when new, will reject greater than 99% of all Total Dissolved Solids (TDS). However, with time, you may see the level of salt rejection drop to 97% or lower. If a high level of salt rejection is important for you, you may wish to consider a Twin Pass RO system. A Twin Pass RO system is where you have two RO systems working in series, one after the other. The permeate from the first RO (‘the first pass’) is then treated through the second RO (‘the second pass’) in order to achieve this higher level of salt rejection. To further improve quality, you may consider caustic dosing or membrane degassing of the first pass permeate. This further improves the rejection of Bicarbonates. Other technologies to consider post RO treatment include electro deionisation or ion exchange polishing.

View our RO Systems

How do I compare different RO systems?

If you are trying to compare different RO systems and the cost implications of each choice, there are several questions that you should ask potential suppliers.

(Video) HOW does a REVERSE OSMOSIS Drinking Water System WORK?

What flux rate do I need? And how many membranes are included within your price?

Flux rate refers to the rate at which the permeate passes through the RO membrane. Manufacturers of RO membranes publish a maximum flow rate for their particular membranes when operated under a fixed set of parameters. Flux rate is measured as litres per metre square per hour (lmh). It is always worth checking that the flux rate specified by the manufacturer of the RO system matches the flux rate recommended by membrane manufacturers. Membrane life span is dramatically reduced if these do not correlate. When comparing offers from various RO suppliers, we would advise that you always ask about the flux rate and find out how many membranes are included within the price of the RO system.

Will your RO system support the integration of additional pumps if needed and if so, how many?

You need to consider whether you also need to invest in some peripheral pumps to make your RO system work effectively. If you need to boost the water pressure to your RO system, you will need a raw water pump. If you need to distribute the permeate from your RO system to points where it will be used you will need a distribution pump. Most manufacturers of RO systems offer a standard control system as part of their package, which does not always allow for the integration of these additional pumps. In this scenario you will need to buy an ancilliary control panel in addition to the RO system. At AWT all our Reverse Osmosis systems (above 500 lph range) include the optional facility for integrating and controlling up to an additional four pumps.

What do you charge for Clean in Place (CIP) connectivity?

In order to extend the life of your RO membranes, particularly on larger RO systems, you periodically need to carry out specialist cleaning of the RO membranes in situ (or ‘clean in place’). At AWT we include CIP connectivity as standard and at no extra cost on all RO systems with a flow rate greater than 500 litres per hour. Many RO suppliers will charge extra for this service.

Can water quality be tested from individual membranes?

We would always advise that you ask this question of any RO system supplier because the ability to test water quality from individual membranes will help you save money in the future when it comes to maintaining your equipment and to fault finding should a problem arise. This is particularly important for larger RO systems.

At AWT our RO systems are provided with a sample port on each RO membrane vessel. This allows our engineers to test the permeate quality from individual RO membranes, an essential tool when fault finding. Consequently we are often able to pinpoint exactly which membranes are not performing as well as they should. This feature on our systems saves money as you may just need to replace an individual membrane rather than a complete set.

What instrumentation do you offer?

With a new RO system, as a bare minimum, you should be able to measure the conductivity of the permeate. Ideally this should be temperature dependent as temperature can impact both permeate flow and conductivity. It is also helpful to have the functionality to measure feed pressure after the RO high pressure pump as any increase in pressure can be an indication of poor performance. It is also worth checking if you are able to monitor flow on the permeate concentrate and concentrate recycle lines. Often the facility to monitor flow on the concentrate recycle is not always included in the price but this facility can play a significant role against membrane fouling and can extend the life of the RO membranes.

View our RO Systems

Do I need a duplex RO system?

In most industrial settings it is unusual to see a duplex RO system being used because, unlike ion exchange systems, there is no requirement with an RO system for regeneration and therefore not the same level of downtime. In fact, RO systems work most efficiently when they are running for an extended period of time. You should only consider a duplex RO system if your RO requirement is process critical. Most companies using RO systems choose a single RO system but keep critical spares on site. With any RO system, duplex or single, you will need to consider the need for downtime for any CIP or emergency maintenance.

Do RO systems need regular servicing?

Generally speaking, RO systems require less maintenance than some other water treatment technologies provided that they are looked after properly. The condition of the membranes is critical to how effectively an RO system functions so they do require some regular cleaning and disinfecting. Knowing your typical flow rate and the average concentration of contaminants needing to be filtered can help you work out how often you need to clean and disinfect.

Typically we would expect an RO membrane to last in excess of three years. However, the actual life span depends upon use, the efficiency of pre-treatment, and regularity of cleaning. In terms of the servicing of your RO system, the frequency will depend upon the complexity of the system you have in place, how strategically important the system is to your business operations, and how efficient your pre-treatment is. If you need advice on this, our team is happy to help.

What spares should I keep?

Most standard RO systems only require a single high-pressure pump and therefore this piece of kit is often considered a critical spare. Other critical spares might include key instrumentation such as conductivity meter and cell. It is not usual to keep spare RO membranes on site, although you may want to consider this if your RO system is critical to your operations.

What are Cleaning in place (CIP) systems ?

Cleaning in Place (CIP) involves circulating cleaning products around the RO membranes in order to remove foulants. There are two stages to CIP and one is undertaken directly after the other.

(Video) Reverse Osmosis Low or No Pressure - How To Fix - Home Master Under The Sink System

An alkali clean is used to remove organics. An acid clean is used to remove inorganic substances such as Calcium and Magnesium scaling or fouling by Iron and Manganese. In addition to these two stages, if it is at all suspected or known that bacterial fouling has occurred, then a specialist bactericide should also be used.

This process should always be undertaken by a specialist or someone who has been properly trained to carry out the procedure. An expert will instantly recognise when you need to change the cleaning solution and will be able to check that the cleaning has been effective. He or she will also be able to ensure that RO downtime for the CIP is as minimal as possible and that the RO system is working at the optimum level.

To improve the efficacy of CIP it can be beneficial to heat the solution to a suitable level, albeit not high enough to cause damage to the membranes. The person carrying out CIP should also monitor the strength and condition of the cleaning chemicals in case it is necessary to either top up the solution strength or to replace it.

When designing a CIP system for an RO system, it is important to consider a number of factors: flow velocity through the membrane modules, the ability to filter any debris removed from the membranes during cleaning and finally the time required to heat the CIP solution in order to minimise downtime.

It is recommended that RO membranes are cleaned when one or more of the parameters listed below is applicable:-

  • The normalized permeate flow drops > 10%
  • The normalized salt passage increases 5-10%
  • The normalized pressure drop (feed pressure minus concentrate pressure) increases 5-10%

What is a Membrane Autopsy?

Having undertaken CIP, if it is not then possible to recover RO membrane performance and, if you want to explore the cause of recurrent membrane fouling, it may we worthwhile carrying out an RO membrane autopsy. This is a destructive process during which the membrane is taken apart and the various components that make up the membrane are studied for signs of damage. The overall autopsy many include a combination or all of the following tests:

  • Visual inspection and weighing of the element
  • Vacuum test to check integrity
  • Performance test and normalization to manufacturer’s standard conditions
  • Open the membrane, visual inspection with light microscope
  • Fujiwara test to check for damage by halogens (e.g. Chlorine)
  • Wet chemistry tests to analyse organic/inorganic content of foulants
  • Biological activity test using ATP and dip slides
  • Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray analysis (EDX) and Chromatic Elemental imaging (CEI) of samples of foulant to confirm foulant make-up and identify suitable cleaners to test
  • Dye test coupons of membrane for passage where appropriate
  • Cell test coupons of membrane with cleaners where appropriate
  • Final report of findings including photographs and SEM/EDX/CEI images

How do I know if my RO membranes are fouled?

The following could all be indications of membrane fouling: a reduction in permeate flow rate, an increase in feed pressure and /or an increase in permeate conductivity. However, because water temperature can have a dramatic impact on flux rate and permeate quality, this should always be checked and excluded first. Normalization is a method used, particularly on larger RO systems, to provide a baseline for membrane performance. This considers initial commissioning values against current operational parameters such as any change in temperature or feed concentration.

Are there any disadvantages to an RO system?

As already mentioned one of the major limitations of using reverse osmosis in water purification is the amount of water that is wasted during the process. This is the water that does not pass through the membrane and is generally referred to as the concentrate as it retains all the dissolved solids that have been retained in the feed water. This may be as high as 25% on a standard RO system but can be reduced by employing additional treatment stages or dependent upon the concentration of the feed water.

Are there more efficient RO systems available?

With the advent of nano-filtration membranes, it is now becoming more common to introduce a recovery stage on the RO concentrate enabling up to 90% recovery. On AWT higher recovery RO systems, the permeate from the concentrate recovery stage is fed back to the feed on the primary RO, which improves the RO permeate quality by reducing the conductivity on the influent feed. This is achieved without an increase in power consumption. Nano-filtration membranes are similar to RO membranes but they have slightly lower rejection for mono-valent ions. Whilst the resulting permeate quality is not quite as high with nano-filtration membranes, they do operate at lower pressure thus ruling out the requirement for an additional booster pump stage. Rejection of multi-valent ions such as Sulphates and Nitrates remains high.

Why are RO systems often used for Pharmaceutical applications?

In the design of pharmaceutical systems it is necessary to provide a minimum of two barriers that can reject bacteria. RO membranes are considered a suitable barrier and therefore one or sometimes two RO membrane stages are often employed when designing pharmaceutical RO systems. The ability to clean RO membranes with bactericidal chemicals helps ensure bacterial integrity is maintained and in some circumstances “crevice free” membrane housings are also used in order to help reduce areas where viable bacteria can hide and proliferate.

With more recent advances heat sanitisable membranes have been developed which can tolerate water temperatures high enough to destroy bacteria without damaging the membranes.

We hope that this guide answers most of the questions you might have in relation to reverse osmosis systems for industrial settings. We would always recommend that you seek professional advice before placing any order for a RO system. Sometimes RO is not always the best solution for businesses looking to purify water and it pays to take the time to ask a water treatment expert for guidance on what will work best to meet your specific requirements.

(Video) How To Install a Reverse Osmosis System & Alternate Location Options - RO Drinking Water System

View our RO Systems


Buying a Reverse Osmosis (RO) system for an industrial setting – a simple guide? ›

A good rule of thumb is to figure what your maximum daily capacity will be, add the 20% as a "fudge factor" and then double that number (so that the system only has to operate up to 12 hours per day). Remember This: Reverse Osmosis Systems are rated at their respective gallons per day at 77 degrees F.

How do you size an industrial reverse osmosis system? ›

A good rule of thumb is to figure what your maximum daily capacity will be, add the 20% as a "fudge factor" and then double that number (so that the system only has to operate up to 12 hours per day). Remember This: Reverse Osmosis Systems are rated at their respective gallons per day at 77 degrees F.

What size reverse osmosis do I need? ›

The most standard sizes you'll see are 50 gallons, 80 gallons, and 100 gallons. If you have a relatively small household, then the 50-gallon system should work for you. If your household is large and between everyone living there, you use a lot of water, then bumping up to one of the larger sizes is a smart bet.

How much does an industrial reverse osmosis unit cost? ›

Commercial systems can cost anywhere from $1,000 to $20,000 with an additional installation cost of $500 to $2,000.

What is the size of industrial RO membrane? ›

RO Membrane, Membrane Length: 40"L, Membrane Diameter: 4" And 8"
Membrane Length40"L
Membrane Diameter4" and 8"
Maximum Chlorine Concentration<0.1ppm
Feed Water TemperatureMax 45 Deg C
Membrane Materialpolyamide

How many gallons of water does it take to make a gallon of reverse osmosis water? ›

Even the best home reverse osmosis systems use 4 gallons of water for every 1 gallon produced. This typically is obtainable only if an Aqua-Tech permeate pump is used. Most systems waste as much as 20 gallons just to produce 1 gallon of product water.

What is the difference between a 50 GPD and 100 GPD RO membrane? ›

The difference is in the REPLACEABLE membrane. The 100 gpd version allows for more flow, therefore producing twice the water in the same amount of time but doesn't filter as well due to the faster water movement through the system. There is no difference in the PVC housing between the 50 and 100 gpd versions.

What is the difference between 75 GPD and 100 GPD membrane? ›

75 GPD vs 100 GPD

The 100 GPD has a slightly less efficient rejection rate meaning you could burn through filters a little faster compared to 75 GPD membrane, but your also producing RO/DI water faster so choose based on what matters to you most.

What does 400 gpd mean? ›

400GPD means 400 Gallons x 3.785411784 Litres which should give 1515.16 Litres in 24 hours which means 63.09 litres per hour.

Do I need a flow restrictor reverse osmosis? ›

Flow Restrictor Purpose Flow Restrictors (also known as Flow Controls or Capillaries) are required for all reverse osmosis systems. The Flow Restrictor must be properly sized to the RO membrane capacity.

How much pressure is required for reverse osmosis? ›

The ideal pressure for operating an RO system is 60 PSI. Pressure below 40 PSI is generally considered insufficient, and should be boosted using a pressure booster pump.

How many gallons per day reverse osmosis system? ›

A Reverse Osmosis system will typically operate under water pressure ranging from 40 to 100 psi and will generate 10 to 75 gallons (45-340 Liters) per day for point-of-use systems.

How much does a reverse osmosis system cost to install? ›

The installation of a whole home RO (reverse osmosis) water filtration system usually costs about $1,500 or generally from $500 to $2,800. A point of use reverse osmosis system runs between $150 and $1,300. Typically, commercial grade systems go from $1,000 and $20,000 and up.

What is industrial reverse osmosis? ›

Reverse Osmosis / RO is a technology used to remove dissolved solids and impurities from water using a semi-permeable RO membrane which allows the passage of water but leaves the majority of dissolved solids and other contaminants behind.

What is industrial reverse osmosis system? ›

Industrial Reverse Osmosis systems remove up to 99.9% of salts and contaminates from different impure feed water sources including municipal, brackish and surface water. The system blocks bacteria, particles, sugars, proteins, dyes, and impurities that encompass a molecular weight of more than 150-250 Dalton.

How many types of industrial RO membranes are there? ›

RO membranes are typically either cellulose acetate or polysulfone coated with aromatic polyamides3. NF membranes are made from cellulose acetate blends or polyamide composites like the RO membranes, or they could be modified forms of UF membranes such as sulfonated polysulfone10.

What is the price of 40 inch RO membrane? ›

Compare with similar items
PriceFrom ₹10,000.00₹8,499.00
Sold ByAvailable from these sellersHi-Tech Sweet Water Technologies (P) Ltd
Included Componentsro membranemembrane
Item Weight3.98 kg4 kg
6 more rows

What are the three layers of RO membrane? ›

An RO membrane is composed of three layers: a bottom layer made of unwoven polyester cloth of thickness 100–200 μm to support the entire membrane, a middle layer consisting of polysulfone (PSF) or polyethersulfone (PES) of thickness 30–50 μm, and a top layer of polyamide (PA) or polyetherimide (PEI), supported by PSF ...

Why can't you drink reverse osmosis water? ›

According to the World Health Organization, low mineral (TDS) drinking water produced by reverse osmosis or distillation is not suitable for long term human consumption and in fact, can create negative health effects to those consuming it. This lack of minerals may also impact the taste negatively for many people.

Can you drink too much reverse osmosis water? ›

Recent studies suggest that RO water may be a risk factor for hypertension and coronary heart disease, gastric and duodenal ulcers, chronic gastritis, goitre, pregnancy complications and several complications in new-borns and infants, including jaundice, anaemia, fractures and growth disorders.

Who makes the best RO membranes? ›

  • The 10 Best Reverse Osmosis Water Filters of 2023.
  • Home Master TMAFC Artesian Full Contact Reverse Osmosis System.
  • APEC Water Systems ROES-50 - Essence 5-Stage 50 GPD Reverse Osmosis Drinking Water System.
  • Home Master TMHP HydroPerfection Reverse Osmosis System.
Apr 13, 2023

What is the ideal water pH of the RO membrane? ›

Reverse osmosis water is nearly pure water with a PH of 7. Reverse osmosis is a filtration method that removes more than 99% of all the contaminants in water. The result is nearly pure water, which has neutral pH of 7. But if it's exposed to air, RO water drops down to an acidic pH range of 5 – 5.5.

What is the difference between 3 stage and 5-stage reverse osmosis? ›

For a 3-stage system, a sediment pre-filter, carbon pre-filter, and a reverse osmosis membrane are necessary for basic filtration. Conversely, a 5-stage system requires the addition of an additional sediment pre-filter, ultraviolet sterilization unit, and/or post-carbon filter.

Is higher GPD membrane better? ›

Is Higher GPD Membrane Better? Not really. Although high GPD membrane improves the performance of reverse osmosis water filter, it also faces some new problems: We will spend more money buying a higher GPD reverse osmosis water filter.

What does 600 gpd mean? ›

The water flow rate of the under-sink water filter can reach 600 GPD (gallons per day). This means you can get a cup of filtered water in just 8 seconds.

What does 100 GPD RO membrane mean? ›

This RO Membrane is rated at 100 GPD (or Gallons per Day) - that translates 100 Gallons in 24 hours.

What is the flow rate of 400 GPD? ›

The 400 GPD reverse osmosis water filter system can filter one liter of water per minute, which means you can get a glass of pure filtered water in just 12 seconds. All in all, you don't need to worry about the flow rate of tankless reverse osmosis water filter systems.

What is 75 GPD RO membrane? ›

This is a 75 GPD (Gallons Per Day) Membrane Filter. This semi permeable membrane effectively reduces TDS and sodium as well as a wide range of contaminants such as Arsenic, Lead, Percholate, Chromium, Copper, Radium and Protozoan Cysts including Giardia and Cryptosporidium.

What is the meaning of _ 80 GPD RO membrane? ›

80 GPD Reverse Osmosis Membrane. Use upto 2000 ppm of TDS in water for a longer life. Can be Used For any Domestic RO System. Upto 95% TDS reduction, Flow Rate 14 Ltrs Per Hour.

Is it bad to remove flow restrictor? ›

Removing the flow restrictor from an H2Okinetic showering device will result in improper operation and a very uncomfortable experience. For water conservation purposes, most plumbing codes require faucets and showering devices to not exceed a certain maximum flow rate.

How do I get more pressure from reverse osmosis? ›

Simply mount the booster pump between the water supply and the RO. A high pressure switch will mount on the pressurized storage tank tubing. This pressure switch cuts off power to the pump when the water storage tank reaches 40 PSI (or rated pre set pressure of the switch).

Does a flow restrictor increase water pressure? ›

In short, a flow restrictor increases pressure on the upstream side of the restrictor. The flow output is decreased in water output per minute, but the force with which it comes out increases.

What is the lifespan of the RO membrane? ›

The typical lifetime of an RO membrane element is three to seven years depending on the application. In some RO systems, however, the membrane elements may only last one to two years.

What is the difference between reverse osmosis and osmosis? ›

Reverse Osmosis is simply the process of Osmosis in Reverse. Whereas Osmosis occurs naturally without energy required, to reverse the process of osmosis you need to apply energy (pressure or force) to the more saline solution.

How often should I drain my reverse osmosis tank? ›

Ideally, you should completely drain your RO storage tank about every 2 weeks. Draining your tank ensures that the water will remain fresh, as well as helping the reverse osmosis membrane maintain the pressure it needs to flush out impurities.

Is reverse osmosis better than drinking water? ›

Reverse Osmosis Water vs.

Mineral water has a higher mineral content than regular tap water, whereas reverse osmosis removes many of the natural (and synthetic) minerals, additives and contaminants groundwater collects before making it through to your tap.

How often do you need to clean a reverse osmosis tank? ›

Clean Storage Tank

It should be cleaned every 12 months using unscented bleach or a sanitizer approved by the National Sanitation Foundation. The process of cleaning the storage tank is simple. After turning off the water supply, remove the RO membranes and filters.

Can you install reverse osmosis yourself? ›

DIY Installation

You need to know where to place the membrane and how to run the tubing through the faucet. Knowing how to shut off the main line and turn it back on is also important. A DIY reverse osmosis water filter installation is risky since you likely don't have the skillset that professionals do.

Why is Culligan reverse osmosis so expensive? ›

As you're researching water filtration options, you might notice that RO systems are more expensive than pitcher, countertop and other basic filter configurations. Why is this? The simple answer is that reverse osmosis is a unique filtration process — one that other filters don't offer.

Do plumbers install RO systems? ›

Hire a Plumber for RO Installation

If you're worried you don't have the right tools, background knowledge, or time to install the reverse osmosis system, we recommend hiring a local plumber. You can save a lot of money by purchasing the Reverse Osmosis System online, and then hiring a plumber to do the install.

How efficient is industrial reverse osmosis? ›

Industrial reverse osmosis is a highly effective industrial water treatment process that can reduce 97-99% of total dissolved solids (TDS) in water.

Which industries use reverse osmosis? ›

To achieve such a goal, industries like mechanical, chemical, pharmaceutical, and lumber/pulp industries, utilize reverse osmosis systems for pre-boiling water treatment/conditioning. Wastewater Treatment: Water treatment industries have adopted reverse osmosis as one of the water purification techniques.

What is reverse osmosis for dummies? ›

Reverse Osmosis (RO) is a water treatment process that removes contaminants from water by using pressure to force water molecules through a semipermeable membrane. During this process, the contaminants are filtered out and flushed away, leaving clean, delicious drinking water.

What are the different types of reverse osmosis systems? ›

There are two types of reverse osmosis membranes commonly used in home water purification products: Thin Film Composite (TFC) and Cellulose Triacetate (CTA).

How does a 5 stage reverse osmosis system work? ›

A reverse osmosis system removes sediment and chlorine from water with a prefilter before it forces water through a semipermeable membrane to remove dissolved solids. After water exits the RO membrane, it passes through a postfilter to polish the drinking water before it enters a dedicated faucet.

How do you calculate reverse osmosis pressure? ›

For RO to function, a minimum pressure of 1 psi is required for every 100 ppm of TDS. In this case, 15 psi of pressure is needed to force a single drop of water through the membrane. This is known as Osmotic Pressure (Π) and is calculated by the equation (Π = TDS/100).

How many parts per million is reverse osmosis water? ›

RO typically reduces TDS to under 25 ppm; distillation reduces TDS to under 10 ppm. Bottled mineral water typically has a TDS level of approximately 400-650 ppm.

What is the maximum PSI for reverse osmosis system? ›

The minimum water pressure that most commercial RO systems require is 40 psi for proper functioning, while 90 psi is the maximum pressure. If there is some issue in your main water supply, there can be a drop in the RO system's water pressure.

What is typical reverse osmosis pressure? ›

Reverse osmosis filtration uses high pressure (100–800 psi) to force water through a semi-permeable membrane that filters out dissolved ions, molecules, and solids (nanofiltration).

What is the maximum pressure for reverse osmosis? ›

The system works with a minimum water pressure of 40 PSI and a maximum of 80 PSI. If your PSI is too high you can purchase a Pressure Regulator to reduce your pressure to acceptable levels. If your PSI is too low you may need a Booster Pump to aid your system.

What is a good TDS level? ›

TDS Level Chart for Drinking Water
TDS in Water (measured in PPM)Suitability for Drinking Water
Between 50-150Excellent for drinking
300-500Poor, not good for drinking
1 more row
Jul 24, 2020

Is 20 TDS safe for drinking water? ›

How Much TDS Level in Water Good For Health. Water is not acceptable for drinking. According to the Bureau of Indian Standards (BIS), the upper limit of TDS levels in water is 500 ppm. The TDS level recommended by WHO, however, is 300 ppm.

How many gallons does a reverse osmosis pump produce per day? ›

A Reverse Osmosis system will typically operate under water pressure ranging from 40 to 100 psi and will generate 10 to 75 gallons (45-340 Liters) per day for point-of-use systems.


1. 5 Problems With Reverse Osmosis Water Filters
(Water Nerd TV)
2. How does reverse osmosis system work ? 5000lph water purification machine
(Chunke Water Treatment)
3. Our new 4040 ro system set up for window cleaning
4. Installation – Reverse Osmosis Water Filtration System
(GE Appliances)
5. How does reverse osmosis work?
6. Ocpuritech Reverse Osmosis--Water Treatment Industry Popular Products
(Ocpuritech Water Purification System)


Top Articles
Latest Posts
Article information

Author: Tish Haag

Last Updated: 04/30/2023

Views: 5998

Rating: 4.7 / 5 (67 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Tish Haag

Birthday: 1999-11-18

Address: 30256 Tara Expressway, Kutchburgh, VT 92892-0078

Phone: +4215847628708

Job: Internal Consulting Engineer

Hobby: Roller skating, Roller skating, Kayaking, Flying, Graffiti, Ghost hunting, scrapbook

Introduction: My name is Tish Haag, I am a excited, delightful, curious, beautiful, agreeable, enchanting, fancy person who loves writing and wants to share my knowledge and understanding with you.